Runtime Monitoring Temporal Logic using streamLAB
CSE 293 Formal Methods

David Kooi
UC Santa Cruz
June 29, 2020
Motivation: High Consequence Missions

- $300 million failure
- Cause: Inadequate testing and specifications
- Calculated thrust: lbf-s
- Expected thrust N-s

Figure 1: Mars Climate Orbiter (1998)

Temporal logic is a formal method to describe the behavior requirements of Cyber Physical Systems (CPS).

- Can formalize "Safety" (Always) and "Liveness" (Eventually) requirements
- Dynamical requirements such as rise time, overshoot, settling time

Overview

- Background in Signal Temporal Logic
- Runtime monitoring using streamLAB and illustration of (in)correct monitors
- Perspectives on adaptive sample rates
Signal temporal logic (STL) was introduced in 2004 by [Maler and Nickovic, 2004]

- An extension of MITL (Metric Interval Temporal Logic) [Alur,] for real valued signals

- Features quantitative semantics: A measure of how well a trace satisfies its specification

- Origins from Metric Temporal Logic developed in 1990. [Koymans, 1990]

Past-Time STL

\[\varphi := p_i \in AP | \neg \varphi | \varphi_i \land \varphi_j | \varphi_i | \Diamond \varphi | \square \varphi \]
STL Semantics

(Past-Time) Boolean Satisfaction Semantics

\[(s, k) \models p_i \in AP \iff f_i(s_k) > 0\]
\[(s, k) \models \neg \varphi_i \iff (s, k) \not\models \varphi_i\]
\[(s, k) \models \varphi_i \land \varphi_j \iff (s, k) \models \varphi_i) \land (s, k) \models \varphi_j\]
\[(s, k) \models \Diamond \varphi_i \iff \exists t' \in t_k - I \text{ s.t } x(t') \models \varphi\]
\[(s, k) \models \Box \varphi \iff \forall t' \in t_k - I, s(t') \models \varphi\]

(Past-Time) Quantitative Semantics

\[\rho(\top, s, k) = +\infty\]
\[\rho(\varphi_i \in, s, k) = f_i(s_k)\]
\[\rho(\neg \varphi_i, s, k) = -\rho(\varphi_i, s_k)\]
\[\rho(\varphi_i \land \varphi_j, s, k) = \min(\rho(\varphi_i, s_k), \rho(\varphi_j, s_k))\]
\[\rho(\Diamond \varphi_i, s, k) = \max_{\tau_{k'} \in \tau_k - I} \rho(\varphi_i, s_{k'})\]
\[\rho(\Box \varphi_i, s, k) = \min_{\tau_{k'} \in \tau_k - I} \rho(\varphi_i, s_{\tau'})\]
Example: Satellite Regulation

Figure 2: Satellite Model[Franklin et al., 1994]

\[
\vec{\dot{\theta}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \vec{\theta} + \begin{bmatrix} 0 \\ d/l \end{bmatrix} u
\]

(1)

Where \(d \) is the length between center of mass and the thruster, \(l = \frac{M_D l^2}{12} \) is
Time Domain Specifications

- t_r: time for a state to reach 90% of the set-point
- M_p: over-shoot (maximum peak)
- t_s: settling time

Figure 3: Time Domain Specifications[Franklin et al., 1994]
Step-response requirements: $\phi = \square (\varphi_{RT} \land \varphi_{OS})$

$\varphi_{RT} = \Diamond_{[0,1.5s]} |\theta - SP| < 0.1 \times SP$ \hspace{1cm} (2)

$\varphi_{OS} = \square \frac{M_p}{SP} < 25\%$ \hspace{1cm} (3)

Note: These requirements are written in future-time logic.
The problem of Causality

- Future logic is intuitive, but not causal

Future Time: \((s, k) \models \square_{[a,b]} \psi \iff \forall t' \in [t_k + a, t_k + b], x(t') \models \psi \)

Past Time: \((s, k) \models \Box_{[a,b]} \psi \iff \forall t' \in [t_k - a, t_k - b], x(t') \models \psi \)

Table 1: Example of (non)causality

How to handle?

- Restrict the temporal logic to its past time fragment. [Ulus, 2019]
- Delay evaluation until a future time interval has passed
- Return indeterminate outputs until a determination can be made [Deshmukh et al., 2015] [Reinbacher et al., 2014]
Translation to Past Time Logic

Top Level Requirement

\[\phi = \square (\varphi_{RT} \land \varphi_{OS}) \]

to

\[\phi = \blacksquare (\varphi_{RT} \land \varphi_{OS}) \]

Rise Time Requirement

\[\varphi_{RT} = \Diamond_{[0, r_t]} |\theta - SP| < 0.1 \]

to

\[\varphi_{RT} = \Diamond_{[0, r_t]}(t == 0 \land |\theta - SP| < 0.1) \]

Overshoot Requirement

\[\varphi_{OS} = \square \frac{M_p}{SP} < 25\% \]

to

\[\varphi_{OS} = \blacksquare \frac{M_p}{SP} < 25\% \]
Runtime monitoring using streamLAB [Faymonville et al., 2019a]:
real-time monitoring engine
Uses rtLOLA [Faymonville et al., 2019b] as temporal specifications
Takes CSV formatted input in real-time

Figure 4: Example rtLOLA Specification
Quantifying the Requirements

Figure 5: Satellite Model [Franklin et al., 1994]

- System states: $t, u, \theta, \dot{\theta}$.

```
3 input time: Float64
4 input u: Float64
5 input theta: Float64
6 input d_theta: Float64
```

Figure 6: Monitor Inputs
Quantifying The Requirements

Top Level Requirements

\[\phi = \blacksquare (\varphi_{RT} \land \varphi_{OS}) \]
\[\rho(\phi) = \min(\rho(\varphi_R), \rho(\varphi_{OT})) \]
Quantifying the Requirements

Overshoot Requirements

\[\varphi_{OS} = \square \frac{M_p}{SP} < 25\% \]

\[= \square \varphi_3 \]

\[\rho(\varphi_{OS}) = \min(\rho(\varphi_3)) \]

\[\rho(\varphi_3) = 0.25 - \frac{M_p}{SP} \]
Quantifying The Requirements

Rise-Time Requirements

\[\varphi_{RT} = \Diamond_{[0,r_t]}(t == 0 \land |\theta - SP| < 0.1) \]
\[= \Diamond_{[0,r_t]}(\varphi_1 \land \varphi_2) \]
\[= \Diamond_{[0,r_t]}\varphi_0 \]

\[\rho(\varphi_{RT}) = \max_{t'_k \in t_k - [0,r_t]} \rho(\varphi_0) \]
\[\rho(\varphi_0) = \min(\rho(\varphi_1), \rho(\varphi_2)) \]
\[\rho(\varphi_1) = \begin{cases} \infty & \text{if } t == 0 \\ -\infty & \text{if } t \neq 0 \end{cases} \]
\[\rho(\varphi_2) = 0.1 - |\theta - SP| \]

Figure 7: Risetime Requirements in rtLOLA
Incorrect Monitor: Sample Rate 2Hz

Figure 8: Monitoring at 2Hz
Incorrect Monitor: Sample Rate 2Hz

Figure 9: STL Robustness Metrics at 2Hz
Correct Monitor: Sample Rate 4Hz

Figure 10: Monitoring at 4Hz
Correct Monitor: Sample Rate 4Hz

Figure 11: STL Robustness Metrics at 4Hz
Sample Rate Selection

- Badly chosen sample rate can cause incorrect monitor conclusions
- How to choose sample rate?
 - 40 times system bandwidth [Franklin et al., 1994]

However, monitors can be computationally and memory intensive. Can a monitor have an adaptive sample rate that

1. Ensures the monitor is correct
2. Minimizes the number of executions
Using Bounded Velocity Assumptions [Fainekos and Pappas, 2009]
The sample period T_k at state s_k can be chosen adaptively as

$$T_k < \frac{\rho(\phi, s, k)}{V} \quad (4)$$

Using the direction of dynamics (Current research)

$$T_k \leq \frac{\rho(\phi, s, k)}{M_s(s_k)} \quad (5)$$

with

$$M_s(s_k) = \sup_{s' \in R(\bar{T}, s_k)} \langle \nabla \rho(x'), f(x') \rangle \quad (6)$$
Conclusion

- Used streamLAB for run-time monitoring of a dynamical simulation
- Manual translation of formal specifications into rtLOLA
- Illustration how sample rate affects monitor correctness

Future Work

- Comparison between streamLAB and Lustre based monitor
- How to ease the translation from formal specifications into software?
- Continuing adaptive sample rate work; developing examples
References

Alur, R.
The Benefits of Relaxing Punctuality.

Robust Online Monitoring of Signal Temporal Logic.
\textit{arXiv:1506.08234 [cs]}.

Robustness of temporal logic specifications for continuous-time signals.
\textit{Theoretical Computer Science}, 410(42).